18721334000
图文]DOE系列之八——解码公差设计
来源:安博体育    发布时间:2024-08-06 19:56:58

  试验设计DOE常常用在新产品的设计和研发工作中,而产品设计常常可大致分为系统模块设计、参数设计和公差设计(又称容差设计)三个阶段,或称三次设计。所谓系统模块设计,是指用专业方面技术研制产品(即样品)及其生产的基本工艺。所谓参数设计,是指确定产品零部件的结构参数和生产的全部过程的工艺参数,选择最佳的参数组合。所谓公差设计,是指对各种参数寻求最佳的容许误差,使得质量和成本综合起来达到最佳经济效益,这是产品设计中不可或缺但又往往被忽略的一个环节容。

   公差设计(ToleranceDesign)通常是在完成系统模块设计和参数设计后进行的,此时一般来说,各元件(参数)的质量等级较低,参数波动范围较宽。公差设计的输出结果就是在参数设计阶段确定的最佳条件的基础上,确定各个参数合适的公差。

  按照一般原理,每一层次的产品(系统、子系统、设备、部件、零件),尤其交付顾客的最终产品都应尽可能减少质量波动,缩小公差,以提升产品质量,增强顾客满意;但同时,每一层次产品也应具有很强的承受各种干扰(包括加工误差)影响的能力,即应容许其下属零部件有较大的波动范围。对于下属零部件通过公差设计确定科学合理的公差,作为生产制造阶段符合性控制的依据。

  因此,公差设计的指导思想是:根据各参数的波动对产品质量特性贡献(影响)的大小,从技术的可实现性和经济性角度考虑有无必要对影响大的参数给予较小的公差(例如用较高质量等级的元件替代较低质量等级的元件)。

  另外有必要注意一下的是,三次设计的顺序并不是一成不变的。虽然公差设计的实施一般晚于参数设计,但有时为获取总体最佳,公差设计也会影响参数设计的再实施。

   公差设计的实现途径很多,很常见的有极值分析法(WorstCase)、统计平方公差法(Root-Sum-Squares)和模拟法(Simulation)三类,下面将会结合实际案例作各自的说明和相互的比较。在高端六西格玛统计分析软件JMP的协助下,公差设计的工作效率更加高速,分析结果更加清晰。在本期的案例分析中,我们将在必要的地方用中英文双语版JMP软件作为DOE方案实现的载体,值得一提的是,JMP软件是目前唯一一款集统计分析功能和专业模拟功能于一身的六西格玛统计分析软件,也是目前全球试验设计方法的领导品牌。

  极值分析法是目前应用场景范围最广泛、操作最简便的方法,大多数的设计都基于这个概念。在这种方法中,零部件都设计为名义值,然后假定公差完全向一个或另一个方向积累,最终的结果仍能满足产品的功能要求。

  在极值分析法分析中主要考虑的是设计规格的线性极值,它虽然确保了所有零件的组合,但往往导致最终结果过于保守,产生过大或过小的公差。而且严格地说,极值分析法并不属于统计方法,但它为后面讲到的统计平方公差法提供了比较的基础,可以帮助我们更好地意识到应用统计方法的好处。我们通过一个典型的机械系统模块设计案例来加深理解。

  场景:在一个装配环中装入4个零件,如图一所示,要求装配间隙Gap的目标值T=0.016,波动范围尽可能小。已知现在的零件1~4服从技术规范1.225±0.003,装配环服从技术规范4.916±0.003。试问:该系统的的目标值是不是达到要求?公差范围是多少?

  也就是说,系统的目标值达到了要求,系统的公差范围是[0.001,0.031],然而真实的情况果真如此吗?系统中每个零部件出现极值的概率分别只有0.0027,由此组成的系统(即间隙)出现极值的概率=0.00275=0.,几乎接近于0。这说明,通过极值分析法估算出来的公差范围过大,没有反应系统的线; 二统计平方公差法(Root-Sum-Squares)

  统计平方公差法基于这样一个假设理论:大多数的零部件在它们的公差范围内呈正态概率分布,此时由它们所构成的系统与各个零部件线性相关,则系统的分布也可以用一个正态分布或近似正态的分布来表示。结合上一个机械系统的案例,这个理论可以用图二表示。所谓的统计平方是指系统的方差是其零部件方差之和,即:,一般假设零部件的公差 ,所以得到系统的统计平方公差:

  也就是说,系统的公差范围变为[0.0093,0.0227],相对于极值分析法的结论,它显得更为接近现实情况。但是,统计平方公差法也存在一个先天性的缺陷:当初始的假定理论不成立,即零部件明显不呈正态概率分布,或者系统与各个零部件呈非线性相关时,原先统计平方公差的计算公式也就不成立了。

  (具体操作参见图三)。短短几秒钟后,汇总十万次模拟结果的间隙分布就由JMP软件自动生成了。从图四能够正常的看到,通过模拟法得到的系统的公差范围变为[0.009,0.023],与统计平方公差法的结论十分相似,非常接近现实情况。同时,模拟法的分析过程生动形象,由它获取的结果的可读性依然很强。更重要的是,当遇到电子线路等非线性模型时,统计平方公差法已不适用,但模拟法却依然有效。

  以上花了很多篇幅介绍了如何正确地预测系统的公差范围。一经发现系统的公差范围过大时,该如何调整零部件参数的公差设置呢?正如我们所知道的,减少零部件参数的公差会提高质量,减少系统功能波动的损失,但缺憾是往往要增加成本。通过公差设计,能确定各参数的最合理公差,使总损失(质量损失与材料成本之和)达到最佳(最小)。接下来将用最简单易懂的模拟法来简要说明。

  ,效果是否会显著改善呢?在高级统计分析软件JMP自带的模拟器的帮助下,我们很快会得到如图五所示的缺陷前后对比。间隙地缺陷数量从原先的74030PPM迅速下降到改进后的340PPM,充分说明效果是明显的。若能够证明因此改进而增加的成本不高时,那我们就更有信心将零件1~4的公差范围设定为1.225±0.0015,装配环的公差范围设定为4.916±0.0015。


新闻推荐
Recommended News